Processing math: 100%

Harvey Laboratory

We seek to understand how changes in environmental conditions (focussing on ocean acidification, ocean warming, and marine heatwaves) will change our oceans. Our research is multidisciplinary, combining field-based (subtidal and intertidal surveys and experiments), aquarium-based manipulative experiments, and desk-based (environmental modelling, statistical modelling, meta-analyses) approaches. Our research covers a wide range of subjects within the context of climate change, including species ecophysiology, biomineralisation, population genetics, biodiversity and community meta-barcoding, community-level structuring processes and interactions, regime shifts and stability, and ecosystem functioning, goods and services. Taken together, this will allow us to better understand the impacts of global climate change on coastal ecosystems worldwide.


Impacts of ocean acidification on Charonia lampas gastropod (left: Control, right: Acidified)

Ocean acidification-driven regime shift from Control (left) to end-of-the-century ocean acidification conditions (right), demonstrating a loss of complexity and biodiversity.

Click here for the Lab Website

2025

2024

generated by bibbase.org
Cornwall, C. E., Comeau, S., & Harvey, B. P. Are physiological and ecosystem-level tipping points caused by ocean acidification? A critical evaluation. Earth System Dynamics, 15(3): 671–687. June 2024.
Are physiological and ecosystem-level tipping points caused by ocean acidification? A critical evaluation [link]Paper   doi   link   bibtex   abstract  
Hemraj, D. A., Minuti, J. J., Harvey, B. P., & Russell, B. D. 4.19 - Marine Heatwaves: Impact on Physiology, Populations, and Communities of Coastal Marine Invertebrates. In Baird, D., & Elliott, M., editor(s), Treatise on Estuarine and Coastal Science (Second Edition), pages 518–531. Academic Press, Oxford, January 2024.
4.19 - Marine Heatwaves: Impact on Physiology, Populations, and Communities of Coastal Marine Invertebrates [link]Paper   doi   link   bibtex   abstract  

2023

generated by bibbase.org
Cornwall, C. E., Carlot, J., Branson, O., Courtney, T. A., Harvey, B. P., Perry, C. T., Andersson, A. J., Diaz-Pulido, G., Johnson, M. D., Kennedy, E., Krieger, E. C., Mallela, J., McCoy, S. J., Nugues, M. M., Quinter, E., Ross, C. L., Ryan, E., Saderne, V., & Comeau, S. Crustose coralline algae can contribute more than corals to coral reef carbonate production. Communications Earth & Environment, 4(1): 105. April 2023.
Crustose coralline algae can contribute more than corals to coral reef carbonate production [link]Paper   doi   link   bibtex   abstract  
Hudson, C. J., Agostini, S., Wada, S., Hall-Spencer, J. M., Connell, S. D., & Harvey, B. P. Ocean acidification increases the impact of typhoons on algal communities. Science of The Total Environment,161269. December 2022.
Ocean acidification increases the impact of typhoons on algal communities [link]Paper   doi   link   bibtex   3 downloads  
Reimer, J. D., Agostini, S., Golbuu, Y., Harvey, B. P., Izumiyama, M., Jamodiong, E. A., Kawai, E., Kayanne, H., Kurihara, H., Ravasi, T., Wada, S., & Rodolfo-Metalpa, R. High abundances of zooxanthellate zoantharians (Palythoa and Zoanthus) at multiple natural analogues: potential model anthozoans?. Coral Reefs, 42: 707–715. April 2023.
High abundances of zooxanthellate zoantharians (Palythoa and Zoanthus) at multiple natural analogues: potential model anthozoans? [link]Paper   doi   link   bibtex   abstract   1 download  
Seto, M., Harvey, B. P., Wada, S., & Agostini, S. Potential ecosystem regime shift resulting from elevated CO2 and inhibition of macroalgal recruitment by turf algae. Theoretical Ecology, 16: 1–12. January 2023.
Potential ecosystem regime shift resulting from elevated CO$_{\textrm{2}}$ and inhibition of macroalgal recruitment by turf algae [link]Paper   doi   link   bibtex   4 downloads  
Zhao, L., Harvey, B. P., Higuchi, T., Agostini, S., Tanaka, K., Murakami-Sugihara, N., Morgan, H., Baker, P., Hall-Spencer, J. M., & Shirai, K. Ocean acidification stunts molluscan growth at CO2 seeps. Science of The Total Environment, 873: 162293. May 2023.
Ocean acidification stunts molluscan growth at CO2 seeps [link]Paper   doi   link   bibtex   2 downloads  

2022

generated by bibbase.org
Cornwall, C. E., Harvey, B. P., Comeau, S., Cornwall, D. L., Hall‐Spencer, J. M., Peña, V., Wada, S., & Porzio, L. Understanding coralline algal responses to ocean acidification: Meta‐analysis and synthesis. Global Change Biology, 28(2): 362–374. January 2022.
Understanding coralline algal responses to ocean acidification: Meta‐analysis and synthesis [link]Paper   doi   link   bibtex   36 downloads  
Hall-Spencer, J. M., Belfiore, G., Tomatsuri, M., Porzio, L., Harvey, B. P., Agostini, S., & Kon, K. Decreased diversity and abundance of marine invertebrates at CO2 seeps in warm-temperate Japan. Zoological Science, 39(1): 41–51. January 2022.
Decreased diversity and abundance of marine invertebrates at CO$_{\textrm{2}}$ seeps in warm-temperate Japan [link]Paper   doi   link   bibtex   79 downloads  
Harvey, B. P., Marshall, K. E., Harley, C. D., & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends in Ecology & Evolution, 37(1): 20–29. January 2022.
Predicting responses to marine heatwaves using functional traits [link]Paper   doi   link   bibtex   22 downloads  
Heitzman, J. M., Caputo, N., Yang, S., Harvey, B. P., & Agostini, S. Recurrent disease outbreak in a warm temperate marginal coral community. Marine Pollution Bulletin, 182: 113954. September 2022.
Recurrent disease outbreak in a warm temperate marginal coral community [link]Paper   doi   link   bibtex   33 downloads  
Kerfahi, D., Harvey, B. P., Kim, H., Yang, Y., Adams, J. M., & Hall-Spencer, J. M. Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification. Microbial Ecology, 85(4): 1202–1214. April 2022.
Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification [link]Paper   doi   link   bibtex   25 downloads  

2021

generated by bibbase.org
Agostini, S., Harvey, B. P., Milazzo, M., Wada, S., Kon, K., Floc’h, N., Komatsu, K., Kuroyama, M., & Hall‐Spencer, J. M. Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Global Change Biology, 27(19): 4771–4784. October 2021.
Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification [link]Paper   doi   link   bibtex   86 downloads  
Agostini, S., Houlbrèque, F., Biscéré, T., Harvey, B. P., Heitzman, J. M., Takimoto, R., Yamazaki, W., Milazzo, M., & Rodolfo-Metalpa, R. Greater mitochondrial energy production provides resistance to ocean acidification in “Winning” hermatypic corals. Frontiers in Marine Science, 7: 600836. January 2021.
Greater mitochondrial energy production provides resistance to ocean acidification in “Winning” hermatypic corals [link]Paper   doi   link   bibtex   abstract   64 downloads  
Allen, R. J., Summerfield, T. C., Harvey, B. P., Agostini, S., Rastrick, S. P., Hall-Spencer, J. M., & Hoffmann, L. J. Species turnover underpins the effect of elevated CO2 on biofilm communities through early succession. Climate Change Ecology, 2: 100017. December 2021.
Species turnover underpins the effect of elevated CO$_{\textrm{2}}$ on biofilm communities through early succession [link]Paper   doi   link   bibtex   70 downloads  
Harvey, B. P., Allen, R., Agostini, S., Hoffmann, L. J., Kon, K., Summerfield, T. C., Wada, S., & Hall-Spencer, J. M. Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site. Communications Biology, 4(1): 219. December 2021.
Feedback mechanisms stabilise degraded turf algal systems at a CO$_{\textrm{2}}$ seep site [link]Paper   doi   link   bibtex   abstract   84 downloads  
Harvey, B. P., Kon, K., Agostini, S., Wada, S., & Hall‐Spencer, J. M. Ocean acidification locks algal communities in a species‐poor early successional stage. Global Change Biology, 27(10): 2174–2187. May 2021.
Ocean acidification locks algal communities in a species‐poor early successional stage [link]Paper   doi   link   bibtex   69 downloads  
Leung, J. Y. S., Harvey, B. P., & Russell, B. D. Editorial: Fitness of Marine Calcifiers in the Future Acidifying Ocean. Frontiers in Marine Science, 8: 752635. September 2021.
Editorial: Fitness of Marine Calcifiers in the Future Acidifying Ocean [link]Paper   doi   link   bibtex  
Peña, V., Harvey, B. P., Agostini, S., Porzio, L., Milazzo, M., Horta, P., Le Gall, L., & Hall‐Spencer, J. M. Major loss of coralline algal diversity in response to ocean acidification. Global Change Biology, 27(19): 4785–4798. October 2021.
Major loss of coralline algal diversity in response to ocean acidification [link]Paper   doi   link   bibtex   54 downloads  
Sasakura, Y., & Harvey, B. P. Institute Profile: Shimoda Marine Research Center, University of Tsukuba. Limnology and Oceanography Bulletin, 30(3): 116–118. August 2021.
Institute Profile: Shimoda Marine Research Center, University of Tsukuba [link]Paper   doi   link   bibtex  
Wada, S., Agostini, S., Harvey, B. P., Omori, Y., & Hall-Spencer, J. M. Ocean acidification increases phytobenthic carbon fixation and export in a warm-temperate system. Estuarine, Coastal and Shelf Science, 250: 107113. March 2021.
Ocean acidification increases phytobenthic carbon fixation and export in a warm-temperate system [link]Paper   doi   link   bibtex   62 downloads  

2020

generated by bibbase.org
Cattano, C., Agostini, S., Harvey, B. P., Wada, S., Quattrocchi, F., Turco, G., Inaba, K., Hall-Spencer, J. M., & Milazzo, M. Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. Science of The Total Environment, 725: 138501. July 2020.
Changes in fish communities due to benthic habitat shifts under ocean acidification conditions [link]Paper   doi   link   bibtex   43 downloads  
Harvey, B. P., Kerfahi, D., Jung, Y., Shin, J., Adams, J. M., & Hall-Spencer, J. M. Ocean acidification alters bacterial communities on marine plastic debris. Marine Pollution Bulletin, 161: 111749. December 2020.
Ocean acidification alters bacterial communities on marine plastic debris [link]Paper   doi   link   bibtex  
Kerfahi, D., Harvey, B. P., Agostini, S., Kon, K., Huang, R., Adams, J. M., & Hall-Spencer, J. M. Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO2. Marine Biotechnology, 22(6): 727–738. December 2020.
Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO$_{\textrm{2}}$ [link]Paper   doi   link   bibtex   22 downloads  

2019

generated by bibbase.org
Fitzer, S. C., Chan, V. B. S., Meng, Y., Rajan, K. C., Suzuki, M., Not, C., Toyofuku, T., Falkenberg, L., Byrne, M., Harvey, B. P., Wit, P. d., Cusack, M., Gao, K. S., Taylor, P., Dupont, S., Hall-Spencer, J. M., & Thiyagarajan, V. Chapter 2 Established and Emerging Techniques for Characterising the Formation, Structure and Performance of Calcified Structures under Ocean Acidification. In Hawkins, S. J, Allcock, A. L, Bates, A. E, Firth, L. B, Smith, I. P, Swearer, S. E, & Todd, P. A, editor(s), Oceanography and marine biology: an annual review, volume 57. 2019. OCLC: 1111577170
Chapter 2 Established and Emerging Techniques for Characterising the Formation, Structure and Performance of Calcified Structures under Ocean Acidification [link]Paper   link   bibtex   abstract  
Hall-Spencer, J. M., & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Sciences, 3(2): 197–206. May 2019.
Ocean acidification impacts on coastal ecosystem services due to habitat degradation [link]Paper   doi   link   bibtex   abstract   15 downloads  
Harvey, B. P., Agostini, S., Kon, K., Wada, S., & Hall-Spencer, J. M. Diatoms Dominate and Alter Marine Food-Webs When CO2 Rises. Diversity, 11(12): 242. December 2019.
Diatoms Dominate and Alter Marine Food-Webs When CO$_{\textrm{2}}$ Rises [link]Paper   doi   link   bibtex   abstract   34 downloads  
Hirano, H., Kon, K., Yoshida, M., Harvey, B. P., & Setiamarga, D. H. E. The influence of CO2 seeps to coastal environments of Shikine Island in Japan as indicated by geochemistry analyses of seafloor sediments. International Journal of GEOMATE, 16(58): 82–89. 2019.
The influence of CO$_{\textrm{2}}$ seeps to coastal environments of Shikine Island in Japan as indicated by geochemistry analyses of seafloor sediments [link]Paper   link   bibtex   10 downloads  
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & Moore, P. J. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4): 306–312. April 2019.
Marine heatwaves threaten global biodiversity and the provision of ecosystem services [link]Paper   doi   link   bibtex   14 downloads  
Straub, S. C., Wernberg, T., Thomsen, M. S., Moore, P. J., Burrows, M. T., Harvey, B. P., & Smale, D. A. Resistance, Extinction, and Everything in Between – The Diverse Responses of Seaweeds to Marine Heatwaves. Frontiers in Marine Science, 6: 763. December 2019.
Resistance, Extinction, and Everything in Between – The Diverse Responses of Seaweeds to Marine Heatwaves [link]Paper   doi   link   bibtex  
Witkowski, C. R., Agostini, S., Harvey, B. P., van der Meer, M. T. J., Sinninghe Damsté, J. S., & Schouten, S. Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan). Biogeosciences, 16(22): 4451–4461. November 2019.
Validation of carbon isotope fractionation in algal lipids as a <i>p</i>CO$_{\textrm{2}}$ proxy using a natural CO$_{\textrm{2}}$ seep (Shikine Island, Japan) [link]Paper   doi   link   bibtex   abstract  

2018

generated by bibbase.org
Agostini, S., Harvey, B. P., Wada, S., Kon, K., Milazzo, M., Inaba, K., & Hall-Spencer, J. M. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone. Scientific Reports, 8(1): 11354. December 2018.
Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone [link]Paper   doi   link   bibtex   32 downloads  
Harvey, B. P., Agostini, S., Wada, S., Inaba, K., & Hall-Spencer, J. M. Dissolution: The Achilles’ Heel of the Triton Shell in an Acidifying Ocean. Frontiers in Marine Science, 5: 371. October 2018.
Dissolution: The Achilles’ Heel of the Triton Shell in an Acidifying Ocean [link]Paper   doi   link   bibtex   31 downloads  

2017

generated by bibbase.org
Harvey, B. P., & Moore, P. J. Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Marine Ecology Progress Series, 563: 111–122. January 2017.
Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality [link]Paper   doi   link   bibtex